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A frequency-domain solution for determining the torsional acceleration tran- 
sient occurring at booster engine cutoff for the Surveyor spacecraft, using the 
Ranger data, is presented in this Memorandum. First, the Fourier transform of 
the transient acceleration, which occurred at the base of the spacecraft during 
the Ranger flights, is computed. A torque at the gimbal blocks is assumed to be 
the cause of this acceleration. The structural characteristics of the Atlas/Agenu/ 
Ranger vehicle are introduced in the form of a transfer function computed from 
the normal modes of the structure for viscous or hysteretic damping. Then the 
Fourier transform of the torque at the gimbal blocks is deduced. 

The next step is the computation of the transfer function of the Atlas/Centaur/ 
Surveyor vehicle, also using the normal modes of the structure. Then the Fourier 
transform of the transient acceleration at the Surveyor field joint is determined, 
assuming that the same torque is present at the gimbal blocks of the Atlas engine 
for both spacecraft, since the same booster is used. Finally, the time history of 
the Surveyor field joint acceleration is computed by inverse Fourier transfor- 
mation. 

A digital computer program has been written which computes direct and 
inverse Fourier transforms, and also operates on the transfer functions of the 
structures. The results are compared, using Ranger VI, VII, V I I I  and I X  data, with 
the analog-time-domain solution of the same problem treated in an earlier Mem- 
orandum, and the instability that was encountered in this type of solution is 
explained. Although the method is illustrated for the Ranger and Surveyor space- 
craft, it is quite general and can be applied to any spacecraft for which the same 
booster is used. The digital-frequency-domain method is much more easily 
implemented than the analog method exposed in an earlier Memorandum. 
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A Fourier Transform Technique for the Prediction of Torsional 
Transients for a Spacecraft From Flight Data of Another 

Spacecraft Using the Same Booster 

I .  Introduction 
A method for the determination of the torsional tran- 

sient vibration environment of the Surveyor at booster 
engine cutoff (BECO), Ref. 1, used the flight data of the 
Ranger series as an input and the problem was solved in 
the time domain. However, an instability occurred on 
both the analog and digital computers which was resolved 
by a special scheme: a synthesis of an input resulted in 
an output equivalent to the ilight data. In the present 
report, the frequency domain solution, which inherently 
avoids the instability just mentioned, is used for the same 
problem. 

I I .  Determination of the Gimbal Torque 
A. Viscous Damping 

T h e  time history of the angular  acceleration 
& (t) = u1 ( t )  at the Ranger adapter is known for the 
BECO event and is recorded on magnetic tape. It is 
assumed that this acceleration is due to an unknown 
transient torque T( t )  applied at the gimbal blocks of the 
Atlas engine at BECO. The first objective is the deter- 
mination of the Fourier transform F(w) of T(t) .  

The equations of motion for the Atlas/Agena/Ranger 
vehicle, Ref. 1, are 

n = 1,2,3, a * * ,  N .  

where 

qn are the generalized coordinates 

0, the natural frequencies 

m, the generalized masses 

t,, the reduced modal dampings 

the modal displacements at the Ranger adapter 

the modal displacements at the gimbal blocks +zn 

Equations (1) and (2) are unstable when the time domain 
solution is programmed either on an analog computer or 
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on a digital computer as found in Ref. 1. To solve the 
problem in the frequency domain let us take the Fourier 
transform of both sides of Eqs. (1) and (2). The Fourier 
transforms of the torque T(t) and the modal displace- 

The summation in Eq. (8) represents the transfer func- 
tion If,(@) from the torque F ( o )  to the adapter accelera- 
tion Vl(o) for the Ranger vehicle. 

(9) 
1 ments qn (t) are: N 

Hl(4 = 41% +zn 
n=o 

F(w) = (emT(t)  e-iot dt (3) 

and Equation (8) can be rewritten in matrix form as follows 

where 

The Fourier transform of the modal velocity and the 
modal acceleration are readily obtained from Eq. (4) 
and are ioQn(o) and -az Qn(w),  respectively. Therefore 
the frequency domain representation of Eqs. (1) and (2) 
is : 

(-0' f 2kn&% -t ai )  Qn(o)  * F(o)  (5) represent the columns of the modal displacements at the 
adapter and the gimbal blocks, respectively, and Z is a 
diagonal matrix constructed with the individual transfer 
functions of the modes 

m, 

(6) 
F ( o )  

VI(,) = m, + c $1, [-a2 Qn(m)I 
12=1 

where V,(W) is the Fourier transform of ul(t) 
where 

V,(W) = l r u l ( t )  e i w t  dt (7) 

n = 1,2,3, . e . ,  N .  

Finally, the input-output relationship relating the torque 
to the adapter acceleration, Ref. 2, is 

Solving Eq. (5) for Om(") and substituting into Eq. (6) 
we obtain: 

1 N 
V l ( 4  = F ( o )  c #1T&+m 

n=n Vi(w) = F ( w )  Hi(o) (13) 

from which we obtain the Fourier transform of the torque. (8 )  

where the subscript n = 0 corresponds to the rigid body 
roll, i.e., = +2n = 1 and 0 0  = 0. 
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u2 ( t )  

v2 ( w )  

B. Hysteretic Damping 

If hysteretic damping is assumed for the structure we 
simply replace 2i& wn/w by 2itn in Eq. (12) which becomes 

Digital method 

10 

8.4 
16 
4.7 

2, = nq[l - (?)' - 2i&] (15) 
Fig. 1. Aflas/Cenfaur/Surveyor transfer function 

Deviation from 
digital to 

analog, % 

+20 

+43 
- 15.5 

4-81 

with no other change in the analysis. The Fourier trans- 
form of the torque is still given by Eq. (12). 

111. Surveyor Field Joint Acceleration 

Although the time domain solution for this part of the 
problem was found to be stable in Ref. 1, a frequency 
domain solution has been also worked out which presents 
definite computational advantages. Let us call H,(o) the 
transfer function for the Ath/Centaur/Surveyor vehicle 
relating the torque T(t )  to the angular acceleration at the 
Surveyor field joint (Fig. 1). The evaluation of this transfer 
function El,(@) is done in a manner completely similar to 
HI(@) from Eqs. (8-11) except that the modes shapes 
q1, $, and the natural frequencies an correspond to the 
new structure; namely, the Atlas/Centaur/Surveyor. 

Applying the Fourier transform of the torque F ( o )  to 
the transfer function H,(  o) we obtain the Fourier trans- 
form of the response at the Surveyor field joint 

Then, using Eq. (13) we have 

Finally, the time history of the response at the Surveyor 
fieId joints is obtained by taking the inverse Fourier 
transform of VZ(o), viz, 

A digital computer program has been written that per- 
forms all the operations mentioned above and gives plots, 
as shown in Appendix A, of the various functions in- 
volved. 

IV. Numerical Computation and Comparison 
With the Analog Method 

The frequency domain method just described was used 
to solve the same problem as in Ref. 1, i.e., deduce the 
Surveyor field joint torsional acceleration from the Ranger 
flight data. The structural characteristics for the 
Ranger and Surveyor vehicles were taken from Ref. 1 
and were used to compute the transfer functions Hl(w) and 
H,(o) respectively. The four flight torsional accelerations 
relative to Ranger VI, VII, VIII, and IX shown in Fig. 2 
were obtained from flight tape after transformation from 
linear acceleration to angular acceleration as indicated in 
Appendix A of Ref. 1. Figure 3 shows the corresponding 
Surveyor field joint accelerations using the digital com- 
puter program described in Appendix A. The analog 
solution obtained in Ref. 1 with the same structural 
characteristics and the same pulses as above is indicated 
in Fig. 4 for comparison. 

Comparing the digital frequency domain method 
(Fig. 3) and the analog time domain method (Fig. 4), we 
conclude that the agreement between the two methods 
depends very much on the driving pulses used. The cal- 
culated peak amplitude responses at the Surveyor field 
joint for the two methods are indicated in Table 1. 

Table 1. Calculated peak amplitudes (rad/sec21 
at Surveyor field joint 

VI  I 12 
VI11 13.5 
I X  8.5 

From this table it is seen that the analog method gives 
higher peaks than the digital method for Ranger VI, VZZ, 
and IX data while the digital method gives higher peaks 
for Ranger VZZZ data. However, it shodd be stated that 
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Fig. 2. Flight torsional acceleration 
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Fig. 3. Surveyor field joint torsional acceleration, frequency domain, digital solution 
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Before concluding this Section, it should be noted that 
upgraded models of the Ath/Agena/Ranger and Atlas/ 
Centaur/SuroeyoT (Ref. 3) were investigated. The results 
of the computation are shown in Fig. 5. The levels ob- 
tained with these models are less than the one obtained 
previously with the less-refined models. 

V. Discussion 

As mentioned earlier, the time domain method leading 
to the determination of T(t )  was basically unstable while 
the corresponding frequency domain method for F(o)  
does not exhibit any stability problem. The reason for 
this difference is now briefly investigated. 

10 

0 

In the Fourier transform approach we consider only 
the particular solution of Eqs. (1) and (2) which is due to 
the forcing function ul( t )  excluding the homogeneous 
solutions of the same system corresponding to a vanish- 
ing ul(t). On the contrary, simulating thesystemof Eqs. (1) 
and (2) on an analog computer, or a digital computer, 
for the time domain solution automatically brings into 
play both the homogeneous and the particular solutions. 
In addition, it is only when all the homogeneous solutions 
are decaying with time that the problem is stable; other- 
wise, an instability occurs whatever the initial conditions. 

-IO 

10 

0 

-IO 

I I  

RA-9 1 10 I 

We now turn to showing that exploding homogeneous 
solutions do exist for Eqs. (1) and (2). For convenience 
we rewrite these equations in matrix form 

Fig. 4. Surveyor field joint acceleration, time domain, 
analog solution 

this comparison is not intended to choose between the 
two methods but is simply done here to check the results 
obtained by the analog method which was only approxi- 
mate as noted in Ref. 1. The digital frequency domain 
solution presented earlier is to be preferred since it gives 
an exact solution with preservation of the phase which 
is not the case for the analog method. 

Finally, we note that the frequency range has been 
limited to 0-100 cps for the same reasons as in Ref. 1, i.e., 
the structural model is not representative above 100 cps 
and the data are not reliable above that same frequency. 

Mq + 64 + Kq = T2 T( t )  (19) 

where 

To assess the stability of the system of Eqs.(19) and 
(20) we eliminate the unknown T(t )  between these equa- 
tions. Consequently, we obtain 
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Fig. 5. Surveyor field joint acceleration, new model 
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where or 

A = M + m&(pT 

We then investigate the homogeneous solutions of the 
system of equations represented by Eq. (21); to this end, 
we set the righthand side equal to zero, viz, 

Aq + Cq + Kq = 0 (23) 

Equation (23) represents a complex eigenvalue problem 
with the particularity that, owing to the term m&@, the 
matrix A is not symmetric. Consequently Eq. (23) is not a 
classical free vibration problem with positive damping 
as it may look at first sight. The homogeneous solutions 
of Eq. (23) are of the form 

where p ,  are either real or complex and n = 1,2,3, * . * ,  

i.e., we have either 

where A, and on are real. Then the general solution is 

qn = C ,  epnt 
n 

where C,  are arbitrary constants depending on the initial 
conditions. 

The system will be stable if all the real parts X, are 
negative and it will be unstable if any one of the real 
parts A, is positive. 

The complex eigenvalue problem was numerically 
solved for the Ath/Agena/Ranger vehicle of Appendix B 
of Ref. 1 and two real parts hz and h7 were found positive 
(Table B-1). These two positive real parts give an insta- 
bility even with a zero initial condition situation since 
the coefficients C,  are never truly zero due to the com- 
puter imperfections. 
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Appendix A 

Computer Program 

1. Sequence 

A digital computer program has been developed at the 
Jet Propulsion Laboratory in order to implement the 
analysis presented in this report. The program (M172) is 
written in Fortran IV and is explained in detail in Ref. 4. 
This is a multipurpose program which can perform all or 
selected portions of the following sequence (see CALC 
of name list). 

1. Given the time history of an acceleration pulse ul(t) 
at the base of a given spacecraft (Ranger) compute 
its Fourier transform 

where 

b(f) = l;;+tx ul(t) sin 27r ft dt  (A-3) 

for equally spaced given discrete frequencies f = fl, 
f,, f 3 ,  . .* fn in cycles per second (0 = hf). The time 
parameter T~ is computed as shown later and tiy is 
the total duration of the pulse. 

2. Compute the transform function H,(f )  for either 
viscous damping or hysteretic damping according 
to Eqs. (10-12), or Eqs. (10, 11, and 15). 

3. Compute the Fourier transform of the torque F ( f )  
according to Eq. (14). 

4. Deduce the Fourier transform of the response V,(f)  
at the base of the second spacecraft (Surueym field 
joint according to Eq. (16). 

5. Compute the inverse Fourier transform of V,(f), i.e., 

uz(t) = 2 real part of 

V,(f) (cos 2rr ft + i sin 27r f t  ) df (A-4) 1 

which is the computer version of the cIassica1 
Eq. (18). 

I I .  Determination of T~ 

We first remark that a time translation T~ is immaterial 
for the definition of the pulse, (Fig. A-1). Next, the 
numerical computation of V,(f) shows that placing the 
origin of time at the beginning of the pulse gives a phase 
angle 

(A-5) 
b a#) = tan-, - 
U 

Fig. A-1. Typical pulse 

between - and + r, which varies very rapidly with f .  
The plotting of this angle a,(f) is therefore very incon- 
venient. In order to correct this situation we note that 
a,(f) is in fact a superposition of a slow oscillation on a 
straight line of negative slope. To obtain this slope we 
straighten out the phase angle by extending a,(f) beyond 
the interval - T, + T. To this end we construct 

where n = 0 for f = 0 and n is increased by unity each 
time there is a sudden jump in al(f) from - 7 to + T. 
(Fig. A-2). Then, k(f )  is written as follows 

where p is the slope of the straight line. 
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A Comparison to Eq. (A-7) shows that 

-31r - I \ I  
\ I  

\ I  
\ I  --- -- 4 

Fig. A-2. Phase angle 

Removing the term Pf from Eq. (A-7) makes the plot- 
ting of the phase angle much more meaningful since only 
the slowly varying a; ( f )  is plotted. We now show that the 
slope f i  is effectively a time translation ro. To this end 
we make the change of variable 

f = t - r o  (A-8) 

therefore ul(t) is changed into u; (t’) 

We then take the Fourier transform of u; (t’), i.e., 

(A-9) 

and finally using Eqs. (A-8) and (A-9) to have 

Equation (A-12) shows that only the phase angle of the 
Fourier transform of ul(t) is affected by a time transla- 
tion T~ with no change for the modulus. If a:(f) is the 
phase angle of V;( f )  we have, from Eq. (A-12) 

p = %To (A-14) 

For numerical computation the origin of -time is first 
temporarily chosen at the beginning of the pulse and the 
Fourier transform computed. Then a least-square fitting 
technique is used to obtain T ~ .  For a proper construction 
of Eq. (A-7) the local slope of al(f) must remain relatively 
small. Hence, the determination of r0 is made in two 
steps: 

1. An arbitrary time shift tl is applied to the pulse, 
i.e., V,(f) is replaced by Vy ( f )  

Vy ( f )  = V,(f) (cos 2Tftl + i sin %ftJ (A-15) 

The slope of the corresponding phase angle ay(f) is 
therefore small. 

2. Then the least square fitting is applied to the new 
phase angle ay(f) to give an additional time shift t o .  
The total time shift T o  is finally 

7 0  = to + tl (A-16) 

Note that the criterion to choose the arbitrary time 
tl is to place the origin of time near the maximum 
amplitude of the pulse. An option is built in the 
program to eliminate the computation of t o  if so 
desired, leaving only a time translation t l .  

111. Input 

The input function ul(t) is available either from digital 
magnetic tape or from cards. When the input is a tape, 
the analog tape is digitized at a given rate and a 250- 
words/sec block set tape is prepared. The digital input is 
identified by a file number and a number of records in 
the file. All other inputs are self-explanatory in the name 
list. 

IV. output 

The outputs are either printed or plotted. In addition, 
the function u2(t) can be stored on magnetic tape. The 
format for the preparation of this tape is the same as the 
input tape for ul(t). Then a special program transforms 
this digital tape into an analog tape which can be used 
for environmental vibration testing (Ref. 1). 
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V. Name-List has a built-in value which is automatically read by the 
program if the variable is not taken in the preparation of 
the name-list. If the variable is indicated, then its value 
overrides the built-in value. The name-list must start with 
the word $ PARAMS and end with $. 

The input other than the input tape for ul(t) and the 
various options in the program are provided by a name- 
list, Table A-1. Note that each variable of this name-Iist 

Table A-1. Name list 

Variable 

CALC 

INPUT 

NV l  

NV2 

MODE 

POINTS 

FILE 

REC 1 

NREC 

SCALE 

RATE 

TYPE 

OUT 

FO 1 

DF 

KFl 

F02 

KF2 

TY pe 

lnteger 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Real 

Real 

Integer 

Integer 

Real 

Real 

Integer 

Real 

Integer 

"Built-in" 
value 

0 

0 

0 

0 

0 

2 

1 

1 

1 

1 .o 

1000.0 

1 

0 

0.0 

0.5 

24 1 

0.0 

24 1 

Use 

Defines which of the various cases of the sequence are to be performed. 

Value Calculafion 

0 Full calculation 

1 

2 

3 

Fourier transform only Eq. (A-1 

Inverse transform only Eq. (A-4) 

Transfer function only Eq. (1 0) 

Must be zero if u&f) is  an input on tape or equal to number of values of u1 to be read in from cards. It 
is also the number of values of t i n  uz(f) when making an inverse transform only. 

When performing an inverse transform only, NV l  specifies the number of values to be read in of the 
modulus of Vz(f). 

As above, NV2 specifies the number of values to be read in of the phase angle of Vz(f). It is also used 
to specify the number of values to read in when Vz(f) i s  given in real and imaginary part form. 

Denotes, in an inverse transform only calculation, whether Vz(fl i s  to be specified by modulus and phase 
angle (MODE = 1) or given by real and imaginary part (MODE = 0). 

Number of points to be used in interpolated construction of real and imaginary port of V,(f) from modulus 

and phase angle for inverse transform only case (POINTS = 2, linear interpolation). 

Denotes file an input tape which contains ul(f). If more than one file is  asked, the rest of the input being 
the same, simply add the new file number at  end of the name-list. Record number, number of records 
and calibration factor are also added but only i f  they are different. However, only one output tape 
can be written. 

Record number within FILE where first q(t) i s  to be obtained. 

Number of records of q(f) to be read. 

Calibration factor for u#) fvoIt/rad/sec', or volt/g) 

Sampling rate used in digitizing u&). 

Determines which transfer function to compute, viscous (TYPE = 1 ) or hysteretic (TYPE = 2). 

Controls the writing of uz(f) on tape. If OUT = 0, no tape will be written; i f  OUT# 0, a tape will be 
prepared. 

Initial frequency used for calculating all frequency dependent functions. 

Frequency increment used in calculating frequency dependent functions. 

Number of frequencies. (Thus, if FO1 = 0, DF = 0.5, and KFl = 241, frequency dependent functions 
will be computed at the points f = 0.0, 0.5, 1.0, 1.5,. . . ,120.) 

Initial frequency to be used in Fourier transform inversion. 

Number of frequencies to be used in transform inversion. (Note that provision has been made to invert 
V,(f) aver a subset of its domain of definition; hence, F02 2 FO1, and F02 + KF2*DF 5 FO1 
+KF1 *DF.A check on this condition i s  made by the program and an error message issued if not met. 
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Table A-1 Icontd) 

I 

Variable 

PRINT 

PLOT 

DT 

N1 

MN 1 

PSlNl 

FN 1 

A1 

61 

N2 

MN2 

PSIN2 

FN2 

A2 

62 

T1 

TST 

TFLAG 

UFLAG 

DC 

PFLAG 

SET - 

Integer 

Real 

Integer 

Real 

Real 

Real 

Real 

Real 

Integer 

Real 

Real 

Real 

Real 

Real 

Real 

Real 

Real 

Real 

Real 

Real 

Reo1 

"Built-in" 
value 

1 

1 

0.001 

0 

0.0 

0.0 

0.0 

0.0 

0.0 

0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.5 

0.0 

0.0 

0.0 

0.0 

0.0 

~ 

Use 

An array of seven numbers which control the printout of the various colculoted functions. 

A nonzero value for PRINT will cause the ith function to be listed. The ordered l ist of functions is: 

i Function 

1 U A f )  

2 Vdf) 
3 
4 F(f) 1 Real,imaginary, modulus, phase angle 

5 H2(N 
6 V2(f) 
7 uz(f) 

An arroy of seven numbers like PRINT which control the plotting of the various functions (as above). A 
zero value inhibits plotting. For the complex functions, a nonzero value which is  also negative causes 
two plots to be made of the phase ongle, one on a linear scale, ond the other on a semi-log scale. 
Only modulus and phase angle ore plotted. 

Time increment, required when q(f) i s  read from cards or when performing an inverse transform only 
to obtain u&). 

Number of values to be read in of f,, M,, t,, 01,, and 0 2 ,  for Hl(f). 

The arroy of M,'s for computing Hl(f). 

The array of 5,'s for Hl(f). 

The array of f;s for Hl(f1. 

The 0 1  column vector for Hi(f). 

The 0 2  column vector for Hl(f1. 

Number of values to be read in of f,, M,, E,, Oln, and 02, for Hz(f). 

The orroy of M,'s for computing Hz(f). 

The array of En's for Hz(f). 

The array of f;s Hz(f). 

The 01 column vector for Hz(f). 

The 0 2  column vector for H2(f). 

Transformation varioble f l  which i s  applied to the Fourier transform Vi(f) of ul(f) according to Eq. (A-1 5); 
also the initial value of f corresponding to uz(f) when performing on inverse tronsform only. 

Refer to straightening out al(f) according to Eq. (A-6). The computer parameter TST i s  used to determin 
how close to - 7r the angle al(f) must be to subtract 27r from al(f). 

Used os o flag for computation of TO 
TFLAG = 0.0 
TFLAG = 1.0 

TO = 71 
TO = TO -l- T I  

Determines offset to be applied to the function ul(f1 
UFLAG = 0.0 NO OFFSET 
UFLAG = 1.0 
UFLAG = 2.0 

Offset = time average of q( t )  
Offset = DC 

Offset to be applied to q ( f )  i f  UFLAG = 2.0 

Determines if modulus and phase angle should be punched out on cards 
PFLAG = 0.0 No cards 
PFLAG = 1.0 Punch cards 

Data set identification (four digits xxxx.) 
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In addition to the name-list input, the four options of 
CALC require additional input as shown in Table A-2. 

Case 

0 

1 

2 

3 

Other input 

If ul(t) i s  on tope, this tape i s  to be mounted on 
SYSUTS. If u&) i s  to be written on tope, o tape should 
be mounted on SYSUT6. If u,(t) i s  input on cards, these 
follow the name-list data and are punched in order 
UI, 02, ..., un according to the format 6E12.8 

Same os for Case = 0 

I f  V2(f) i s  given by real and imaginary parts (MODEZO), 
then they ore punched two points per card according 
to the format 6E12.8 as follows: 

f,, Re(Vzi), lrn(Vzx), f,+l, Re(Vz,+d, Im(Vzl+l) 

If Vz(f) i s  given by modulus and phose angle, the 
moduli are given first in the order: 

f,, Mod(Vzt), f,+i, M~d(Vzc+iJ,  . . . 
in the format 6E12.8. These ore then followed by the 
phase angles f,,  Phase(Vz,), f,,?, Phore(Vz,+,), ... in the 
some format 

No other input 

- . ~  30.0 

N 

f 200 
b 
T- 10.0 
e 

3- 
Y 

0 

-10 0 

-20 0 

. .  
-0.1 0 0: I 0:2 

TIME, s 

Fig. A-3. Input torsional acceleration, Ranger Vlll 

As an example, Figs. A-3 through A-14 show a typical 
output calculation corresponding to Ranger VI11 data. 
Part of the input is indicated in Table A-3. The imput 
representing u,( t )  was on digital tape. 

Io-' 
0 aI 

s e 
3 
A- 

0 
CI) 
2 
-I 
2 n 
0 
5 

LL 10-2 

 IO-^ 

FREQUENCY, cps 

Fig. A-4. Fourier transform of input acceleration, 
modulus 

FREQUENCY, cps 

Fig. A-5. Fourier transform of input acceleration, 
phase angle 
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Table A-3. Input sample 

FREQUENCY, cps FREQUENCY, cps 

Fig. A-6. Transfer function of AtIasJAgenalRanger, Fig. A-7. Transfer function of AtlasIAgenalRanger, 
modulus phase angle 
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) 50 

FREQUENCY, cps 

3 eo 90 N)o 

Fig. A-8. Fourier transform of gimbal torque, 
modulus 

3.0 

2.0 

U e 
-* 1.0 
*- 
k 

w o  

a 

B 
-I 
0 z 
w 
v) -1.0 
Q 
I a 

-2.C 

-3.0 

FREQUENCY, cps 

Fig. A-9. Fourier transform of gimbal torque, 
phase angle 

20 30 40 50 60 70 00 90 I& 

FREQUENCY, cps 

Fig. A-10. Transfer function of AtlasICentaurlSurveyor, 
modulus 

1 90 IC 

FREQUENCY, cps 

Fig. A-1 1. Transfer function of AtlasICentaurlSurveyor, 
phase angle 
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IO - 1  

0 

24 a e 10-2 

k 
Y 

9 

v) 10-3 

3 

LL 
0 

3 
0 
0 
5 

10-4 

0 IO  1 30 
1, I 50 60 70 80 90 IO 

FREQUENCY, cps 

Fig. A-1 2. Fourier transform of Surveyor field joint 
acceleration, modulus 

0 IO & & 4b 50 60 70 80 & IO 

FREQUENCY, cps 

Fig. A-1 3. Fourier transform of Surveyor field joint 
acceleration, phase angle 

15.0 I I I  I I I 

-0.1 0 0. I 0:2 0:3 

TIME, s 

Fig. A-14. Surveyor field joint acceleration 
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Appendix B 
Complex Eigenvalue Problem 

- 
91 = 

Equation (23) was solved using the JPL complex eigenvalue program 5363000 ENGSIP (Ref. 5). The input matrix A 
was computed from Eq. (22) in which 

0.343 

0.578 

0.152 

-0.467 

- 0.415 

0.163 

The matrices A, C, and K are: 

- 
9 2  = 

M =  

-0.604 

1.390 

-0.825 

- 1.380 

1.320 

- 0.855 

- 

~ 

! 
1 0 0 0 0 0 0 0  

0 1 0 0 0 0 0 0  

0 0 1 0 0 0 0 0  

0 0 0 1 0 0 0 0  

0 0 0 0 1 0 0 0  

0 0 0 0 0 1 0 0  

0 0 0 0 0 0 1 0  

- 0 0 0 0 0 0 0 1  

A =  

m,, = 1.054 

- 
1.131 1.462 0.356 0.5997 0.158 -0.484 -0.430 0.169 

-0.163 -0.828 -0.445 -0.749 -0.197 0.605 0.538 -0.211 

-0.0802 -0.898 0.782 -0.368 -0.0968 0.297 0.264 -0.104 

0.184 2.066 0.503 1.846 0.222 -0.684 -0.608 0.239 

-0.1096 -1.226 -0.298 -0.503 0.868 0.406 0.3605 -0.141 

-0.183 -2.051 -0.499 -0.841 -0.221 1.679 0.604 -0.237 

0.175 1.961 0.477 0.804 0.212 -0.649 0.422 0.227 

--0.114 -1.271 -0.309 -0.521 -0.137 0.421 0.374 0.853 
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C =  

- - 
4 . 7 5 0  0 0 0 0 0 0 

0 1 3 . 0 0  0 0 0 0 0 

0 0 2 0 . 8 0  0 0 0 0 

0 0 0 2 5 . 5 0  0 0 0 

0 0 0 0 3 0 . 1 0  0 0 

0 0 0 0 0 3 0 . 5 0  0 

0 0 0 0 0 0 4 1 . 6 0  

- 0 0 0 0 0 0 0 56.5- 

K =  

- 
6250 

0 

0 

0 

0 

0 

0 

0 - 

0 

46940 

0 

0 

0 

0 

0 

0 

0 0 0 0 0 0 

0 0 0 0 0 0 

120700 0 0 0 0 0 

0 180500 0 0 0 0 

0 0 251500 0 0 0 

0 0 0 255600 0 0 

0 0 0 0 483100 0 

0 0 0 0 0 855200 

Finally the roots of the complex eigenvalue problem are shown in Table B-1. 

Table B-1. Roots of the complex eigenvalue problem 

Real part An 

-405.44 
482.69 

-2.1737 
- 10.1 39 
-14.1 24 
-392.82 
354.31 1 

- 14.992 
- 26.176 

Imaginary part w,# 

0 
0 

%75.1 16 
2337.22 
2470.71 
2474.628 
2480.1 99 
c500.140 
f852.709 
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